

最近,中科院半导体所半导体超晶格国家重点实验室的朱礼军研究员和美国康奈尔大学Daniel C. Ralph教授合作,克服了一系列技术难题,首次实现了对自旋霍尔金属/亚铁磁异质结中自旋输运和弛豫行为的精准定量研究。如图1所示,亚铁磁材料是具有两套反平行排列磁性子晶格的特殊材料,在两套磁性子晶格磁性完全补偿时成为共线反铁磁,而在其中一套子晶格主导时趋向于铁磁。因此,反铁磁材料具有极强的可调控性,是探究反铁磁耦合相关新物理、新效应的理想材料平台。该工作发现同一自旋流施加的自旋轨道矩随着亚铁磁层中磁性补偿快速变化并在靠近磁矩补偿点时逐渐减小为零!这一本征物理行为可以理解为:在补偿点附近,通过自旋-磁矩交换相互作用的自旋弛豫速率(τM-1,可近似地认为正比于饱和磁矩Ms大小)变得远远小于通过自旋轨道散向晶格弛豫的速率(τso-1,正比于自旋轨道耦合强度ζso和电子动量散射速率τe-1的乘积),导致自旋流主要通过晶格自旋轨道散射弛豫而不参与自旋轨道矩的产生过程。这一结果不能归结于界面自旋透过率的变化,因为独立的自旋泵浦实验表明亚铁磁金属界面的自旋混合电导(Spin-mixing conductance)和3d 铁磁金属一样高且对磁性补偿不敏感。这些研究结果清楚地揭示了不同自旋弛豫机理之间的竞争对自旋轨道矩大小的关键决定作用,也意味着“界面自旋扭矩”概念在亚铁磁和反铁磁体系中失效。
该物理机理是继自旋霍尔效应(Spin Hall effect)、界面自旋透过率 (Interfacial spin transparency)之后的又一重要发现,从基础层面补齐了自旋轨道矩的基本物理框架,将自旋轨道矩的通用公式从方程(1)拓展为

因此,当自旋轨道散射可忽略不计时,自旋轨道矩效率在非零τM-1情况下为不随材料饱和磁矩变化的常数;而当自旋轨道散射不可忽略时自旋轨道矩效率可能随饱和磁矩或τM-1的减小而减小 (见图2)。
这一拓展的自旋轨道矩物理图像不仅为文献报道的铁磁、亚铁磁和反铁磁耦合体系中千差万别甚至让人费解的自旋轨道矩现象提供了统一的物理理解,同时也预言了自旋轨道矩器件可以通过优化磁性材料自旋弛豫机理提高能效。
该机理也意味着完全补偿的亚铁磁和完美的共线反铁磁(Ms=0)并不适合作为自旋信息存储介质。从自旋扭矩器件应用角度,很长的自旋退相干长度意味着该磁性介质与自旋流的相互作用效率极低,因而是一个致命缺点而非独特优势。
该工作以"Strong Variation of Spin-Orbit Torque with Relative Spin Relaxation Rates in Ferrimagnets"为题在线发表在国际期刊Nature Communications,朱礼军研究员为第一作者和通讯作者。该工作得到了科技部、国家自然科学基金委和中科院的经费支持。
论文全文链接:https://doi.org/10.1038/s41467-023-37506-9。


赵工
13488683602
zhaojh@kw.beijing.gov.cn
欢迎各公众号,媒体转载,申请加白名单秒通过
投稿/推广/合作/入群/赞助/转发 请加微信13488683602